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Radar Imagery  

 

The dynamic responses of the polar ice sheets can have substantial impacts on sea level 

rise. Accurate predictions of future sea level rise are limited by an incomplete 

understanding of an ice sheet’s internal and subglacial layers, which preserve variations 

in accumulation, ice thickness, and ice flow. Identifying layers is performed with time-

consuming, dense hand-selection and interpolation between sections for each echogram. 

There is a need for innovative algorithms to support automatic analysis of bedrock and 

internal layers. 

In order to satisfy qualifying exam requirements adhered to by the School of Informatics 

and Computing, I will provide an overview of past work and explain a few optimization 

techniques, which can be used to improve automatic interpretation of layer boundaries. 

 

Introduction  

The polar ice sheets interact with climatic forces, and the impact of their retreat on global 

sea level would be profound. Forecasting the evolution of ice sheets in Greenland and 

Antarctica will depend on the development of accurate numerical models. Currently, ice 

sheet models suggest a response to climate change on a millennia timescale, an idea, 

which advocates considerable time to develop planning strategies for responding to 

global climate effects. However, existing models cannot explain the recent satellite 

observations showing rapid thinning of ice sheet margins, the speedup of several outlet 



glaciers in Greenland, and the disintegration of ice shelves in West Antarctica. In order to 

better understand the mechanisms controlling either the net loss or gain of ice, there is a 

need to use radio echo sounding techniques to collect ice thickness over ice sheet margins 

and mapped internal layers in polar firn. 

A number of remote sensing technologies, such as radar, have surveyed remote locations 

about the Earth in order to infer its properties. For example, airborne radio echo sounding 

(RES) has been used for many years to determine variations in ice thickness, subglacial 

topography, and the mass balance. Radars use antennas to transmit and receive energy of 

a particular target, and the travel time of a signal provides information on the reflection 

intensity and depth. Based on the intensity and travel time, different properties of a target 

can be characterized. A specific imaging instrument, such as the ground-penetrating radar 

(GPR) offers the ability to observe properties of the subsurface, and when acquiring data 

about the ice sheets in Greenland and Antarctica, the targets are typically internal 

layering within the ice and the bedrock. The first (surface) and last (bedrock) reflections 

determine ice thickness while a number of internal reflections are used for calculating the 

accumulation rate. These reflections occur when the complex dielectric constant of 

electromagnetic waves change [1]. A number of researchers have investigated the sudden 

changes in the complex permittivity of ice and identified three major causes: changes in 

density, acidity, and crystal-orientation fabrics [2], [3], [4], [5], [6]. 

Radar sounding, however, is challenging due to the rigid surface interface, various stages 

of melting, and subtle variations of ice thickness and bedrock topography. The Center for 

Remote Sensing of Ice Sheets (CReSIS), a Science and Technology Center established by 

the National Science Foundation to increase measurement capabilities, has developed and 



deployed nonintrusive instruments capable of imaging the ice-bed interface through a 3 

km thick of ice, which is critical to understanding rapid glacial changes. Analyzing large 

amounts of echograms is important to validate models, but identifying ice features, 

particularly internal layers, are challenging since multiple, non-existence layers cause 

domain experts to skip and misclassify them. The polar science community has 

developed brute force techniques for manually selecting key layer boundaries but, the 

custom software provides a tedious and time - consuming task to be performed efficiently 

and consistently. There is a need for techniques to support the automatic analysis of 

internal layers.���This qualifying exam will focus on the internal layer problem and discuss 

a few global optimization techniques, specifically simulated annealing, dynamic 

programming, and genetic algorithms, for minimizing energy to improve boundary 

detection. 

Related Literature 

There has been considerable work dedicated to estimating internal and subsurface layers 

from echograms. Most related work has focused on identifying either basal boundaries or 

other coarse properties of echograms. For example, Freeman et al. [7] used a unique 

coordinate transformation approach and Ferro and Bruzzone [8] proposed a novel, four 

step technique for investigating how shallow ice features can be automatically detected in 

icy regions from echograms of Mars. Ferro and Bruzzone techniques include denoising 

and enhancement of an echogram, removal of the first return, and extraction 

measurements of interest. In other work, Ferro and Bruzzone [9] detected the bedrock by 

studying how statistical distributions can accurately model the amplitude fluctuations of 

different subsurface targets. Approaches to identifying surface and bedrock layers in 



polar radar imagery have been addressed in Reid et al. [10], Ilisei et al. [11], and Crandall 

et al. [12]. Reid et al. used an active contours (“snake”) model, Illisei et al. generated a 

statistical map of the subsurface by exploiting properties of the radar signal and applying 

a segmentation algorithm tuned to an investigated area, and Crandall et al. used a markov 

random field model, which allowed evidence from local features and global features to be 

combined into a single probabilistic framework. 

For work addressing the internal layer identification problem in polar radar imagery, 

Fahnestock et al. [13] developed an algorithm, which uses cross-correlation and a peak-

following routine to trace near surface internal layers in northern Greenland. Karlsson 

and Dahl-Jensen [14] present a ramp function based approach for predicting internal 

layers. Sime et al. [15] developed a technique to obtain layer dip information from two 

Antarctic datasets: the ground-based Fletcher Promontory and the airborne-based Wilkes 

Subglacial Basin. They applied a horizontal averaging technique to reduce layer noise, 

identified layers, isolated individual ‘layer objects,’ measured the orientation and other 

object properties, and collected valid dip information. The authors obtained good results 

in estimating and characterizing dips but do not attempt to trace complete layers, which 

are useful in other applications. 

Deformable Models 

Segmentation has been widely studied, but remains a difficult technique because of the 

large variations in object shapes and image quality. In particular, radar echograms are 

corrupted by either image noise or other image artifacts, which can cause hindrance when 

applying traditional segmentation methods, such as edge detection, region growing, and 



thresholding. To address these difficulties, deformable models or snakes, have been used 

as a promising alternative. Deformable models are curves defined in an image, which 

gravitate using external and internal force. The internal forces allow for continuity and 

smoothness while the external forces move the model towards an object boundary or 

desired features. Using constraints of smoothness and incorporating prior information for 

extracted boundaries allow deformable models to provide robustness and accuracy from 

image noise and boundary gaps. 

Although contour models have been deployed for extracting regions of interest, there 

exist some limitations. For example, snakes, in a non-interactive application, are 

initialized near the interest boundary in order to guarantee good performance. The 

internal energy constraints of snakes limit their geometric flexibility by preventing them 

to target shapes with significant topology. Also, since deformable models are parametric, 

knowledge of an object’s shape has to be known in advanced. 

There has been much effort to develop various methods for improving the automation of 

deformable contour models. Cohen and Cohen [16] used an internal “inflation” force to 

expand a snake model’s past spurious edges towards the read edges of a structure, 

making the snake less sensitive to initial conditions. Amini et. al [17] used dynamic 

programming to carryout a more extensive search for a global minima. Poon et al [18] 

and Grzeszczuk and Levin [19] minimized the energy of active contours models using 

simulated annealing, which is known to give global solutions and allows the information 

of non-differentiable constraints. Other researchers [20], [21], [22], [23], [24] have 

integrated region-based information into deformable contour models or used other 

techniques in an attempt to decrease sensitivity to insignificant edges and initial model 



placement. 

Near Surface Internal Layers 

Observations about how domain experts detect layer boundaries in order to develop a 

semi-automated algorithm to mimic these behaviors. As shown in Figure 1 and as is 

typical for our experimental images, the surface reflection is very strong and near surface 

layer intensity generally decreases as depth increases. Also, near surface layers are 

approximately parallel, but may have modest changes in slope both to one another and to 

the ice surface. 

 

Figure 1 Original Echogram 

We propose a technique, which attempts to find the prominent surface reflection and 

searches for similar (but invariably weaker) layer structures below the surface. We used 

each layer as an estimate of the appearance for the layer below it and an active contours 

(“snakes”) model to snap the correct layer structure given this estimate. We describe the 

process of detecting the surface, estimating layer location using curve point classification 

and refining the use of snakes in the following sections: 



Edge Detection 

To find the location of the surface boundary, which is typically the most prominent edge 

in the echogram, we used a Canny edge detector [25] because of its performance in 

detecting strong intensity contrasts for our near surface layer dataset (shown in Figure 1). 

In detecting this initial ice surface, the following fixed Canny parameters were used: a 

sigma of 2 for the standard deviation of the Gaussian filter and a low and high thresholds 

of 0.7 and 1.8, respectively. Since the ice surface is symmetrical to subsequent layers, it 

provides a good starting template. 

 

Figure 2: Edge Detection of the Ice Surface 

Curve Point Classification 

While the ice surface can be readily detected by edge detection, using it for near surface 

internal layers is not possible because of the very weak layer boundaries and the noise 

inherent in echograms. As a consequence, we used Steger’s approach [26] to identify 

points in an echogram (shown in Figure 2), which were likely to be part of curvilinear 

structures. In short, this approach computes statistics on gradient structures within local 

image patches and investigates areas with prominent gradients in a coherent direction. 



We identified peaks for scores computed by Steger (shown as blue asterisks in Figure 3 

and used these to suggest initial curve positions for estimating near surface internal 

layers. For the first layer, we used the ice surface estimated previously and shifted it 

down, (in the y direction) so it intersected the first maximum point. This process was 

repeated until the number of near surface internal layers specified by the user has been 

found and gave initial estimates of layer positions and shapes, which we refined in the 

next step.  

Figure 2: Curve Point Classification 

Figure 3 Detected Layers (Green) and Maximum Curve Points (Blue Asterisks) 



Active Contours 

To refine the curve shape and position estimates from the previous section, we used an 

active contours (snakes) model [27], a procedure for allowing an initial contour to 

gravitate towards an object boundary. Briefly summarized, the snakes model defines an 

energy function, which computes the “cost” of a particular curve (sequence of points). 

The function is defined to encourage the curve to align with high-gradient edge pixels but 

to discourage the curve from having either discontinuities or sharps bends. These two 

goals are often in tension, and the energy minimization function is used to find the curve 

with the best trade-off between them. An iterative gradient descent (hill-climbing) 

algorithm is used to find the curve with the best (local) minimum, given an estimate of 

the correct answer as initialization. In our methodology, active contours are used to warp 

the initial templates from the last section into a refined estimate, which better matches the 

local image data. For this to succeed, the initial contour must be close to the actual layer 

in order for the snake to find the correct boundary and not be confused by either noise or 

other edges in the image. A layer is fit when the energy function converges to a either 

minimum or when a maximum number of iterations has reached its threshold. Using 

active contours requires setting several parameters ( α , β , and γ values – these are 

weights on the terms in the energy minimization function and control the trade-off 

between the forces mentioned above). We tuned these parameters empirically to find 

values, which work well on most images and allow the user to further tune them on a per-

image basis, if needed. 

 



Results 

Figure 1 shows the result of our approach for Figure 4. We observe it has successfully 

found over a dozen layers correctly, although it misses some of the very faint layers 

towards the bottom of the echogram. Figure shows results for three additional echograms. 

While the algorithm works quite well for layers near the surface, it does miss or 

incorrectly identify some of the deeper layers (such as the discontinuities in Figure, 

which the estimates skip from one layer boundary to another) 

 
Figure 4 

Optimizations 

Optimization provides a framework for discriminating among solutions. The framework 

consists of an objective and energy minimizing functions. An objective function is 

formulated from the set of all possible solutions and measures the quality for a particular 

solution. In order to design an objective function for a problem, it is necessary to 

formulate a set of constraints for an acceptable solution, which satisfy a condition. For 

example, two constraints used in computer vision are: data and prior knowledge. The data 

constraint restricts a desired solution to be in approximation of the observed data while 



the prior constraint confines the desired solution to the prior knowledge. Smaller values 

evaluated from an objective function typically suggest a better solution, and a global 

minimum provides an optimal solution to the problem. 

The second step of the approach is to minimize the energy function. Although the design 

of a good energy function is not trivial, its optimization is even harder 

Simulated Annealing 

Simulated annealing [28] was inspired by the natural process of annealing solids. The 

physical process of annealing involves slowing cooling metal, so it adopts a low energy, 

crystalline state. When the temperature of the metal is high, the particles within the metal 

are active, changing the metal structure. As the temperature is lowered, the particles are 

limited in movement since a high energy cost are very limited to configurations with a 

lower energy. Simulated annealing uses the idea of a physical process, in a computational 

model. The basic algorithm maintains both a state and a temperature, which is initially 

high and is reduced to near-zero according to a cooling schedule. The configuration is 

typically a solution to the optimization, and at each iteration of the algorithm, this 

solution is changed to produce a new solution. The quality of the solution is evaluated 

using the objective function, and a new state is selected from the two solutions. When a 

new solution is better than the previous, the new solution is chosen, but when the new 

solution has a lower quality than the existing solution, it may be accepted with a 

probability depended on the current temperature and the difference in quality. With 

certain cooling schedules, annealing can be guaranteed to find a global minimum. 

 



Genetic Algorithms 

A genetic algorithm [29] is search technique based upon principles of genetics and 

natural selection. Genetic algorithms allow a population composed of many 

chromosomes, which is a unique solution to the problem, to evolve until the population 

includes better solutions and converges, into a single solution. Of the three operators for 

generating new solutions crossover and mutation, are the most popular. In the crossover 

method, two chromosomes, called parents, are combined to form new chromosomes, 

called offspring. The parents are selected among existing chromosomes in the population 

with preference towards fitness, so offspring is expected to inherit good genes, which 

make the parents fitter. By iteratively applying the crossover operator, genes of good 

chromosome are expected to appear more frequently in the population, eventually leading 

to convergence to an overall good solution. The mutation operator introduces random 

changes into characteristics of chromosomes. Mutation reintroduces genetic diversity 

back into the population and assists the search escape from local optima. Reproduction 

involves selection of chromosomes for the next generation. In most cases, the fitness of 

an individual determines the probability of its survival for the next generation. 

Dynamic Programming 

Dynamic programming [30] decomposes a problem into a set of subproblems, which the 

solution of a subproblem is used multiple times, for solving several the problem. 

Dynamic programming algorithms different from traditional recursive methods because 

of this concept. 

 



Conclusion 

Optimization techniques, such as dynamic programming, simulated annealing, and 

genetic algorithms, provide a measure of quality for a particular solution. Also, we have 

developed a semi-automated approach to estimate near surface internal layers in snow 

radar imagery. Our solution utilizes an active contour model in addition to edge detection 

and Stegers curve classification. Our technique is a step towards the ultimate goal of 

unburdening domain experts from the task of dense hand selection and an insight into 

global optimization techniques would better provide autonomy to layer detection. 

References 

 [1] Ludwig Hempel, Franz Thyssen, Niels Gundestrup, Henrik B Clausen, and 

Heinz Miller, “A comparison of radio-echo sounding data and electrical 

conductivity of the grip ice core,” Journal of Glaciology, vol. 46, no. 154, pp. 

369–374, 2000.  

[2] G de Q Robin, S Evans, and Jeremy T Bailey, “Interpretation of radio echo 

sounding in polar ice sheets,” Philosophical Transactions for the Royal Society of 

London. Series A, Mathematical and Phys- ical Sciences, pp. 437–505, 1969.  

[3] CH Harrison, “Radio echo sounding of horizontal layers in ice,” Journal of 

glaciology, vol. 12, pp. 383–397, 1973.  

[4] Preben Gudmandsen, “Layer echoes in polar ice sheets,” Journal of 

Glaciology, vol. 15, no. 73, 1975.  



[5] G PAREN, “Internal reflections in polar ice sheets,” Journal of Glaciology, 

vol. 14, no. 7I, pp. I975, 1975.  

[6]  John W Clough, “Radio echo sounding: Reflections from internal layers in ice 

sheets,” J. Glaciol, vol. 18, no. 78, pp. 3–14, 1977.  

[7]  G. Freeman, A. Bovik, and J. Holt, “Automated detection of near surface 

Martian ice layers in orbital radar data,” in IEEE Southwest Symposium on Image 

Analysis & Interpretation, 2010, pp. 117–120.  

[8]  A. Ferro and L. Bruzzone, “Automatic extraction and analysis of ice layering 

in radar sounder data,” IEEE Transactions on Geoscience and Remote Sensing, 

2013.  

[9]  A. Ferro and L. Bruzzone, “Analysis of radar sounder signals for the 

automatic detection and charac- terization of subsurface features,” IEEE 

Transactions on Geoscience and Remote Sensing, 2012.  

[10] MyAsia Reid, Christopher M Gifford, Michael Jefferson, Eric L Akers, 

Gladys Finyom, and Arvin Agah, “Automated polar ice thickness estimation from 

radar imagery,” in Geoscience and Remote Sensing Symposium (IGARSS), 2010 

IEEE International. IEEE, 2010, pp. 2406–2409.  

[11] A.-M. Ilisei, A. Ferro, and L. Bruzzone, “A technique for the automatic 

estimation of ice thickness and bedrock properties from radar sounder data 



acquired at Antarctica,” in IEEE International Geoscience and Remote Sensing 

Symposium, 2012, pp. 4457–4460.  

[12] D. Crandall, G. Fox, and J. Paden, “Layer-finding in radar echograms using 

probabilistic graphical models,” in International Conference on Pattern 

Recognition, 2012, pp. 1530–1533.  

[13]  M. Fahnestock, W. Abdalati, S. Luo, and S. Gogineni, “Internal layer tracing 

and age-depth- accumulation relationships for the northern greenland ice sheet,” 

Journal of Geophysical Research, vol. 106, no. D24, pp. 33789–33, 2001.  

[14]  N. Karlsson and D. Dahl-Jensen, “Tracing the depth of the holocene ice in 

north greenland from radio-echo sounding data,” Annals of Glaciology, 2012.  

[15] L. Sime, R. Hindmarsh, and H. Corr, “Instruments and methods automated 

processing to derive dip angles of englacial radar reflectors in ice sheets,” Journal 

of Glaciology, vol. 57, no. 202, pp. 260–266, 2011.  

[16] Laurent D Cohen and Isaac Cohen, “Finite-element methods for active 

contour models and balloons for 2-d and 3-d images,” Pattern Analysis and 

Machine Intelligence, IEEE Transactions on, vol. 15, no. 11, pp. 1131–1147, 

1993.  

[17] Amir A Amini, Terry E Weymouth, and Ramesh C Jain, “Using dynamic 

programming for solving variational problems in vision,” Pattern Analysis and 



Machine Intelligence, IEEE Transactions on, vol. 12, no. 9, pp. 855–867, 1990.  

[18]  Colin S Poon, Michael Braun, Rebecca Fahrig, Athula Ginige, and Andrew 

Dorrell, “Segmentation of medical images using an active-contour model 

incorporating region-based image features,” in Vi- sualization in Biomedical 

Computing 1994. International Society for Optics and Photonics, 1994, pp. 90–97.  

[19] Robert P Grzeszczuk and David N Levin, “brownian strings: Segmenting 

images with stochastically deformable contours,” Pattern Analysis and Machine 

Intelligence, IEEE Transactions on, vol. 19, no. 10, pp. 1100–1114, 1997.  

[20] Nicolas F Rougon and Francoise J Preteux, “Deformable markers: 

Mathematical morphology for active contour models control,” in San Diego,’91, 

San Diego, CA. International Society for Optics and Photonics, 1991, pp. 78–89.  

[21] Jim Ivins and John Porrill, “Statistical snakes: active region models,” in 

BMVC, 1994, pp. 1–10.  

[22] Amit Chakraborty and James S. Duncan, “Game-theoretic integration for 

image segmentation,” Pattern ���Analysis and Machine Intelligence, IEEE 

Transactions on, vol. 21, no. 1, pp. 12–30, 1999.  

[23] IL Herlin, C Nguyen, and Christine Graffigne, “A deformable region model 

using stochastic processes applied to echocardiographic images,” in Computer 

Vision and Pattern Recognition, 1992. Proceedings CVPR’92., 1992 IEEE 



Computer Society Conference on. IEEE, 1992, pp. 534–539.  

[24] John M Gauch, Homer H Pien, and Jayant Shah, “Hybrid boundary-based and 

region-based deformable models for biomedical image segmentation,” in SPIE’s 

1994 International Symposium on Optics, Imag- ing, and Instrumentation. 

International Society for Optics and Photonics, 1994, pp. 72–83.  

[25] J. Canny, “A computational approach to edge detection,” IEEE Transactions 

on Pattern Analysis and Machine Intelligence, , no. 6, pp. 679–698, 1986.  

[26] C. Steger, “An unbiased detector of curvilinear structures,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 2, pp. 

113–125, 1998.  

[27] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” 

International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.  

[28] SP Brooks and BJT Morgan, “Optimization using simulated annealing,” The 

Statistician, pp. 241–257, 1995. 

[29] John H Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1, 

pp. 66–72, 1992. ���[30] Richard Bellman, “Dynamic programming and lagrange 

multipliers,” Proceedings of the National 

[30] Academy of Sciences of the United States of America, vol. 42, no. 10, pp. 

767, 1956. 



 

 

	
  


